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SYNOPSIS  

This is a state-of-the-art paper about nonlinear dynamic analy-
sis of plane reinforced concrete building structures through consis-
tent prejudices of a single person. The paper reviews the behaviour 
of reinforced concrete members and their subassemblages observed 
during laboratory tests. Then, different hysteresis and analytical 
models of reinforced concrete members are studied. Finally, their 
application to the simulation of behaviour of small-scale plane build-
ing models observed on earthquake simulators is discussed. 

RESUME  

On fait etat des connaissances sur l'analyse non-lineaire du 
comportement dynamique des bitisses construites en beton arme. Des 
risultaXs en laboratoire des membruresetassemblages en beton arme 
sont presentes. Une enumeration des techniques existantes de modeles 
non-lineaires et de dissipation d'energie utilises en beton arme est 
preparee. L'application est faite a des modeles reduits en laboratoire. 
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INTRODUCTION 

Dynamic response of a structure can be caused by different load-
ing conditions such as, (a) earthquake ground motion, (b) wind pres-
sure, (c) wave action, (d) blast, (e) machine vibration, and (f) traf-
fic movement. Among these, inelastic response is mainly caused by 
earthquake motions and accidental blasts. Consequently, more research 
on nonlinear structural behaviour has been carried out in relation to 
earthquake problems. This paper describes the research development 
in earthquake engineering. 

The dynamic behaviour of a structure might appear to be best 
studied through a series of dynamic tests of real structures. Various 
testing methods are available. However, dynamic characteristics up 
to failure cannot be identified solely through a dynamic test of a 
real structure by the following reasons: (a) it is difficult to 
analyze data because the response includes complex interactions of 
various parameters within a real building; (b) it is very expensive 
to build a structure, as a specimen, for destructive testing; and 
(c) the capacity of a shaker is insufficient to cause failure of a 
full-scale structure. 

Consequently, dynamic tests of real buildings are rather aimed 
toward obtaining data, (a) to confirm the validity of mathematical 
modelling techniques for a linearly elastic structure, and (b) to ob-
tain damping characteristics of different types of structures. A 
specifically designed laboratory test becomes inevitable to complement 
the weakness of full-scale tests and to study the effect of individual 
parameters. 

Dynamic problems are different from static ones in the following 
respects: (a) inertia force, (b) damping, (c) strain rate (velocity), 
and (d) stress reversals due to oscillation. The inertia force is a 
product of absolute acceleration and mass. In a building structure, 
mass is normally assumed to concentrate at a floor level. Mass dis-
tribution within each member needs be included when local vibration of 
the member is of interest. Damping characteristics, strain rate ef-
fect and the effect of stress reversals are discussed further. 

Nonlinear dynamic analysis of a reinforced concrete structure 
requires two types of mathematic modelling: (a) a model to represent 
the distribution of stiffness along a member, and (b) a model to 
represent the force-deformation relationship under stress reversals. 
A variety of models for plane reinforced concrete building structures 
are reviewed in this paper. 

• 
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DAMPING 

Any mechanical system possesses some energy dissipating mechan-
isms; for example, (a) inelastic hysteretic energy dissipation, (b) 
radiation of kinetic energy through foundation, (c) kinetic friction, 
(d) viscosity in materials, and (e) aerodynamic effects. However, 
the state-of-the-art does not provide a method to determine the damp-
ing capacity based on the material properties and geometrical charac-
teristics of a structure. Such energy dissipation, vaguely termed as 
"damping", is most often assumed to be of viscous type because of its 
mathematical simplicity. In the nonlinear dynamic analysis of a 
structure, a damping matrix is normally assumed to be proportional to 
the constant mass matrix and/or the instantaneous stiffness matrix. 
The damping is known to have a major effect on the dynamic response 
amplitude of a linearly elastic structural model. 

Damping capacity is often determined during a sinusoidal steady-
state resonant test by the band-width of the response curve. Figure 1 
shows acceleration response amplitudes during a series of steady-state 
tests of a reinforced concrete building at different intensity excita-
tion levels (1). Measured damping capacity varied from 0.6 per cent 
of critical in a man-excited test to a maximum of nearly 2 per cent. 
Note that damping capacity is not a unique value of the structure, but 
it depends on the level of excitation. Further investigation is 
necessary to determine the energy dissipation characteristics of a 
structure. 

STRAIN RATE EFFECT 

The response of a structure during an earthquake is dynamic. The 
stiffness and strength of various materials are known to increase 
with the rate of loading. However, it is technically more difficult 
to test structural elements under a realistic dynamic condition in a 
laboratory. 

The effect of strain rate on the behaviour of the reinforced 
concrete was reported by Mahin and Bertero (2), who tested four 
medium-size reinforced concrete beams under third-point loads at 
constant speeds during loading and unloading. Important findings from 
this investigation are as follows: (a) displacement rates showed 
practically little effect on initial stiffness; (b) high strain rates 
increased the yield resistance by more than 20 per cent; but (c) high 
strain rates caused small differences in either stiffness or resis-
tance in subsequent cycles at the same displacement amplitudes; (d) 
strain rate effect on resistance diminished with increased deformation 
in a strain hardening range; and (e) no substantial changes were ob-
served in ductility and overall energy absorption capacity. 

It is important to recognize that the strain rate (velocity) 
during an oscillation is highest at low stress level, and that the 
rate gradually decreases toward a peak strain. Cracking and yielding 
of a reinforced concrete member reduce the stiffness, hence the period 
of oscillation becomes longer with structural damage. Furthermore, 
such damage is normally caused by first several modes of vibration, 
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Indeed, dynamic hysteresis loops obtained from one-storey one-bay 
reinforced concrete frames were compared favourably with those ob-
tained from quasi-static tests (3). 

4 
4 

BEHAVIOUR OF REINFORCED CONCRETE MEMBERS 
4 

whose periods are relatively long. Therefore, the strain rate effect 
may not be as important as the material tests under extraordinary 
high and constant strain rates indicate. 

Therefore, the hysteretic behaviour of reinforced concrete 
members observed during a "static" test can be utilized in a non-
linear dynamic analysis of reinforced concrete structures. When a 
structure is studied under a blast load, the effect of strain rate 
need be considered. 

Behaviour of reinforced concrete materials under full range of 
stress reversals and under general multi-stress states has not been 
completely understood to a stage where analytical material models can 
predict every aspect of inelastic member behaviour. Although such 
models are useful for qualitative and quantitative examination of a 
critical region of a member, it is not feasible nor recommended to 
apply these material models to an analysis of an entire building 
structure. Normally the computing effort required for an analysis 
using material models becomes extremely expensive compared to the 
gain in accuracy and reliability of the computed results. Therefore, 
it becomes more important to study the behaviour of reinforced con-
crete isolated members (beams, columns, slabs and walls) and their 
sub-assemblies (beam-column, slab-column and slab-wall connections) so 
that their analytical models can be developed for use in the response 
analysis of a complete structure. 

Thousands of reinforced concrete members have been tested under 
static load reversals. A typical force-deflection curve of a canti-
lever column (305 x 305 x 1524-mm) under lateral load reversals is 
shown in Fig. 2 (4). Note the following observations: (a) tensile 
cracking of concrete and yielding of longitudinal reinforcement re-
duced the stiffness; (b) when a deflection reversal is repeated at the 
same newly attained maximum amplitude (for example, cycles 3 and 4) 
the loading stiffness in the second cycle is lower than that in the 
first cycle, although the resistances at the peak displacement are al-
most identical; (c) average stiffness (peak-to-peak) of a complete 
cycle decreases with a previous maximum displacement amplitude. For 
example, the peak-to-peak stiffness of cycle 5, after large amplitude 
displacement reversals, is significantly reduced from that of cycle 2, 
although subjected to comparable displacement amplitude reversals. 
Therefore, it can be seen that the hysteretic behaviour of the rein-
forced concrete is sensitive to loading history. 

Flexural Characteristics Under Reversed Loading  

A regular reinforced concrete member resists bending and shear. 
Let us consider deformations corresponding to bending and shear. 
Flexural deformation "index", or average curvature, is obtained from 
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longitudinal strain measurements at two levels, assuming that a plane 
section remains plane during deformation. This flexural deformation 
index does not represent the flexural deformation in a strict sense 
because a plane section does not remain plane in a region where an 
extensive shear deformation occurs. However, the index is useful to 
understand flexural deformation characteristics qualitatively. 

A typical moment-flexural deformation index curve obtained from 
a simply supported beam test (5) is shown in Fig. 3. It is interest-
ing to note that the stiffness during loading gradually decreases with 
load, forming a fat hysteresis loop, and absorbing a large amount of 
hysteretic energy. The hysteresis loops remain almost identical even 
after several load reversals at the same displacement amplitude beyond 
yielding. Consequently, vibration energy of a structure can be dis-
sipated through flexural hysteresis loops without causing the reduc-
tion in the resistance. Therefore, current design provisions encour-
age the reinforced concrete member to be designed to behave dominantly 
in flexure. Many hysteretic models, as discussed later, are currently 
available to represent the flexural behaviour of reinforced concrete 
members. 

The increase in axial force decreases the ductility of a rein-
forced concrete member, but increases force levels corresponding to, 
(a) tensile cracking of concrete, (b) tensile yielding of longitudinal 
reinforcement, and (c) inclined shear cracking of concrete. 

Shear Deformation Characteristics Under Load Reversals  

Similar to the flexural deformation index, a shear deformation 
index is defined from strain measurements in the two diagonal direc-
tions to study qualitatively the shear deformation characteristics. 
Again, this index does not represent the true shear deformation be-
cause the interference of shear and flexural deformations exists. 

A typical lateral load-shear deformation index curve obtained 
from a simply supported beam test (5) is shown in Fig. 4. Contrary to 
the flexural stiffness, the stiffness during loading gradually in-
creases with load, exhibiting a "pinching" in the curve. The hyster-
etic energy dissipation is smaller. The hysteresis loop decays with 
number of load reversals, resulting in a smaller resistance at the 
same peak displacement in each repeated loading cycle. The effect of 
loading history is pronounced on the shear deformation. 

Although the curve shows a "yielding" phenomenon, it is important 
to recognize that the shear force of the member was limited by flex-
ural yielding at the critical section rather than by "yielding" in 
shear. This "yielding" clearly indicates the interaction of shear and 
bending moment. 

The "pinching" in the force-deformation curve is obviously less 
desirable. The shear span to effective depth ratio is the most signi-
ficant parameter that controls the shear deformation. Decreasing the 
shear span to depth ratio causes a more pronounced "pinching" in the 
curve, and a faster degradation of hysteretic energy dissipating 
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capacity. 

Considerable improvements in delaying and reducing the degrading 
effects can be accomplished by using closely spaced ties. Existence 
of axial force tends to retard the decrease in stiffness and strength 
with cycles because the cracked concrete surfaces are pressed to-
gether by the axial force (6). 

However, it is hard to eliminate this undesirable effect when 
high shear stress is present. Consequently, it becomes important to 
include this degrading behaviour in a behavioural model for a short, 
deep reinforced concrete member. Unfortunately, the current state of 
the knowledge is not sufficient to define the stiffness degrading par-
ameters on the basis of the geometry of a member and the material 
properties. 

Bar Slip and Bond Deterioration  

When a structural element is framed into another element, some 
deformation is initiated within the other element. Consider a beam-
column sub-assembly. Bertero and Popov (7) reported a significant 
rotation at a beam end caused by the slippage (pull-out) of the beams' 
main longitudinal reinforcement within the beam-column joint (Fig. 5). 
The general shape of the moment-bar slip rotation curve is similar to 
that of the shear force - shear deformation index curve shown in 
Fig. 4, demonstrating a pronounced pinching of a hysteresis loop. 
The contribution of bar slip to total deformation cannot be neglected, 
especially in a stiff member (short or deep) where the deformation of 
a member is small. 

Summary  

Behaviour of a reinforced concrete member and sub-assemblies 
under static reversed cyclic loading is reviewed briefly. These ob-
servations are applicable to beams, columns, walls and their sub-
assemblies Although brittle shear, compression, and anchorage fail-
ures of the reinforced concrete are normally prevented through the 
application of building code provisions, structural members and sub-
assemblies can not be completely free from those deformations. It is 
desirable that an analytical model of a reinforced concrete member 
should include these characteristics attributable to flexure, shear, 
axial force and bar slip. 

HYSTERETIC MODELS FOR REINFORCED CONCRETE 

A hysteresis model must be able to provide the stiffness and re-
sistance under any displacement history. At the same time, the basic 
characteristics need be defined by the member geometry and material 
properties. The current state of knowledge on the reinforced concrete 
behaviour is sufficient to determine the shape of force-flexural de-
formation hysteresis from given member geometry and material proper-
ties. However, it is not sufficient to determine the degree of stiff-
ness degradation due to the deterioration of shear resisting mechan-
isms and due to bar slip under load reversals. 

• 

• 
i 
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It is interesting to realize the inelastic dynamic analysis 
methods were developed by purely analytical people in the late 1950's 
with the advent of digital computers, and remained in their hands 
through the 1960's. When the numerical methods for nonlinear dynamic 
analyses of a simple structure were made easily accessible to experi-
mental investigators in the late 1960's, more realistic hysteresis 
models were developed by many experimental researchers. 

Bilinear Model 

At the initial development stage of nonlinear dynamic analysis 
technique, the elastic-perfectly plastic hysteretic model was used by 
many investigators because the model was simple and efficient to use. 

The maximum displacement of a single-degree-of-freedom system 
with the elasto-plastic stiffness was found (8) to be practically the 
same as that for an elastic system having the same period of vibration 
as long as the system has a period longer than 0.5 sec. 

A reinforced concrete or steel member normally exhibits a strain 
hardening characteristic after yielding. Therefore, a finite positive 
slope was assigned to the post-yield stiffness. The bilinear model 
does not dissipate hysteretic energy until yielding is developed. 

The hysteresis of a bilinear model is compared with an observed 
hysteresis obtained from a cantilever reinforced concrete member test 
(4) in Fig. 6. The bilinear model does not represent the degrading 
of loading and unloading stiffnesses with increasing displacement 
amplitude reversals. Therefore, the usage may not be encouraged in a 
refined nonlinear analysis of a reinforced concrete structure. 

Clough's Degrading Stiffness Model  

The first qualitative model for the reinforced concrete was 
developed by Clough (9), who incorporated the stiffness degradation 
in the bilinear model. 

After studying the force-deflection history of well designed re-
inforced concrete under static load reversals, Clough proposed to 
modify the bilinear model as follows: during loading, the response 
should always move toward the previous maximum response point on the 
force-deformation diagram. Unloading slope is always parallel to the 
initial elastic slope. This small modification was a significant step 
toward the development of more realistic hysteretic models for the 
reinforced concrete. The model simulates the flexural behaviour of 
the reinforced concrete (Fig. 7). 

The effect of stiffness degradation on the ductility demand 
during earthquake was studied through the response analyses of a 
series of single-degree-of-freedom systems (9). It was concluded 
that, (a) the degrading stiffness did not cause any significant change 
in the ductility factors for long period structures (period longer 
than 0.6 sec.) compared to the bilinear stiffness; on the other hand, 
(b ) the short period structure with degrading stiffness properties 
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has significantly larger ductility requirements than the corresponding 
elasto-plastic systems; and (c) the response waveform of a degrading 
stiffness model was distinctly different from that of any ordinary  
elasto-plastic model. 

nonlinear analysis research. 

Takeda's Degrading Stiffness Model  

A hysteresis model, similar to the Clough model, was developed 
independently by Takeda, Sozen and Nielsen (10). Takeda's model in-
cluded stiffness changes at flexural cracking and yielding, and strain 
hardening characteristics. Unloading stiffness was reduced by an ex-
ponential function of previous maximum deformation. Takeda also pre-
pared a set of rules for load reversals at a displacement amplitude 
less than the previous peak amplitudes. These are major improvements 
from the Clough model. 

Failure or extensive damage caused by shear or bond deteriora-
tion was not considered in the model. The Takeda model, similar to 
the Clough model, simulates dominantly flexural behaviour. However, 
flexural deformation, connection deformation and bar slip of longitu-
dinal reinforcement within the connection were suggested (10) to be 
considered in defining the backbone curve. 

The hysteresis of a Takeda model is compared with an observed 
hysteresis (4) in Fig. 8. A major characteristic of the observed 
hysteresis is represented by the Takeda model. The specimen failed 
by compressive crushing of concrete, which could not be incorporated 
by the Takeda model. 

To test the goodness of the Takeda model, cantilever columns 
(152 x 152 x 724-mm) tested on the University of Illinois earthquake 
simulator was analyzed (10). Calculated acceleration waveforms were 
favourably compared with the observed waveform as shown in Fig. 9. 

Takayanagi Model  

A pinching action and strength decay are inevitable in a short 
and deep member due to bar slip and deterioration in shear resistance. 
In order to model the behaviour of short-deep beams, Takayanagi and 
Schnobrich (11) introduced a pinching action and strength decay in the 
Takeda model. Whenever a working hysteresis loop is located in the 
positive rotation - negative moment range or the negative rotation 
positive moment range, the stiffness is reduced (Fig. 10). 

After the rotational spring has exceeded the yield moment, a 
strength decay is introduced in the hysteresis loops on subsequent 
cycles. The rate of the strength decay is assumed to proportionally 
increase with rotation, and controlled by a guideline. After moment 
reaches the guideline, the hysteresis curve becomes parallel to the 
post yield slope of the original primary curve. 

I 
The model is relatively simple, and has been used extensively in 
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The values of guideline for strength decay and pinching stiff-
ness were not related to the member geometry and material properties 
in their modelling, but rather obtained from load reversal tests of 
the member. Further research should be encouraged to develop better 
and rational methods of determining the parameters for pinching and 
strength-decay properties of the reinforced concrete under load re-
versals. 

Degrading Tri-Linear Hysteresis Model  

A model that simulates dominantly flexural stiffness characteris-
tics of the reinforced concrete was developed and used extensively in 
Japan (12). The backbone curve is a trilinear shape with stiffness 
changes at flexural cracking and yielding. Up to yielding, the model 
behaves in the same way as the bilinear model. Once deformation ex-
ceeds the yield point, the model behaves as a perfectly plastic 
system. Upon unloading, the unloading point is treated as a new 
"yield" point, and unloading stiffnesses corresponding to pre- and 
post-cracking are reduced proportionately so that the behaviour be-
comes the same as the bilinear model in a range between the positive 
and negative "yield" points. 

This model is extremely similar, in nature, to the bilinear 
model, and is simple to use in an analysis. The hysteresis of a de-
grading bilinear model is compared with the observed hysteresis (4) 
in Fig. 11. Although the degrading trilinear model includes a crack-
ing point in the hysteresis, the cracking point of this model should 
be used to control the fatness of a hysteresis loop (4) rather than 
to represent an actual flexural cracking point. The model can simu-
late major flexural characteristics of the reinforced concrete. 

ANALYTICAL MODEL FOR REINFORCED CONCRETE MEMBERS 

Inelastic deformation of a reinforced concrete member does not 
concentrate in a critical location, but rather spreads along the 
member as shown in Fig. 12. Various models have been proposed and 
used to represent the distribution of stiffness within a reinforced 
concrete member. This section reviews some representative member 
models. Different hysteretic models can be assigned to the deformable 
part of a member model. 

The effect of gravity load on the beam behaviour and the contri- 
bution of slabs to the structural stiffness will not be discussed. 

One-Component Model  

An elasto-plastic frame structure can be analyzed by placing a 
rigid-plastic spring at the location where yielding is expected. The 
part of a member between the two rigid-plastic springs remains per-
fectly elastic. All inelastic deformation is assumed to occur in 
these springs. 

This one-component model was generalized by Giberson (13) and 
used in the nonlinear analysis of frame structures. The bilinear 
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moment-rotation relationship was used for the springs. 

Let us consider a simply supported beam subjected to external 
moments at supports. The member consists of a linearly elastic pris-
matic member and two rotational springs at its ends, as shown in 
Fig. 13. Using the fact that moment at an end of the elastic member 
is the same as that of the spring, and that rotation is the sum of 
rotations of the spring and of the elastic beam end, a flexibility 
relation can be formulated. 

The major advantage of using the one-component model is that the 
amount of inelastic deformation and stiffness of a spring depends 
solely on moment acting in the spring, and is independent of moment 
acting at the other end. Therefore, it is simple to assign any 
complicated hysteretic rules to the spring. 

This fact is also a weakness of the model because the member end 
rotation should be dependent on the curvature distribution along the 
member, hence dependent on moments at both ends. Let us consider two 
cases of moment distribution along a member AB, causing yielding at 
member end A, as shown in Fig. 14. Moment at the other end B is 
equal to the moment at A-end in case I, and is zero in case II. Cor-
responding curvature distributions can be of the form shown in the 
same figure for the two cases, and the inelastic rotations at A-end 
are given by the shaded areas. Although the moments at A-end are the 
same, case II can be seen to cause larger inelastic rotation at A-end. 
Consequently, the evaluation of stiffness characteristics of an 
equivalent inelastic spring becomes a problem. Normal practice in 
defining the stiffness of an equivalent inelastic spring is to apply 
imaginary member-end moments of equal magnitude, causing asymmetric 
moment distribution along the member with the inflection point at mid-
span, and member end rotations are calculated. 

This method of evaluating member end rotations is acceptable as 
long as the point of inflection of any member stays close to the mid-
point during the oscillation. Such is not warranted. Furthermore, 
moment distribution of a beam is not linear because of the existence 
of gravity loads. Thirdly, inelastic deformation normally penetrates 
into a member, and it is not rational to lump all inelastic deforma-
tions at one point. These are rational criticisms against the model. 

It is true that the point of inflection does not locate at mid-
span during oscillation. The usage of initial location of inflection 
point was suggested by Suko and Adams (14). However, once yielding is 
developed at one member end, moment at the other end must increase to 
resist higher stress, moving the inflection point toward the centre 
of the member. At the same time, large concentrated rotation starts 
to occur near the critical section. 

Therefore, it can be expected that the performance of the one-
component model might be reasonable if the effect of gravity load on 
the beam deformation is small, and for a relatively low-rise frame 
structure, in which the inflection point of a column locates reason-
ably close to mid-height. 
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Multi-Component Model  

In an effort to analyze frame structures well into inelastic 
range under earthquake excitation, an interesting model was proposed 
by Clough, Benuska and Wilson (15). A frame member was divided into 
two imaginary parallel elements: an elasto-plastic element to repre-
sent a yielding phenomenon, and a fully elastic element to represent 
strain hardening behaviour (Fig. 15). When member end moment reaches 
the yield level, plastic hinge is placed at the end of the elasto-
plastic element. Aoyama and Sugano (16) adapted the two-component 
model into the multi-component model for a generalized inelastic 
analysis of reinforced concrete structures. Four parallel beams were 
used to account for flexural cracking, different yield levels at two 
member ends and strain hardening. 

Let us consider a simply supported beam subjected to member end 
moments (Fig. 15). Suppose this beam consists of imaginary three 
parallel components. As the three components are placed parallel, 
and connected at the two ends, the three components have the same 
rotations at their ends, and the resultant member end moments are the 
sum of the moments of the three components. Consequently, a stiffness 
matrix of such a member can be formulated. It is clear that, using 
the multi-component model, deformation compatibility of the imaginary 
components is satisfied only at their ends. 

The multi-component model appears to have a merit; rotation at 
one end of a member depends on moments at both ends of the member. In 
other words, the distribution of moment along a member can be approxi-
mately reflected in the analysis. However, the stiffness of the 
parallel components must be evaluated under a certain assumed moment 
distribution. Therefore, the stiffness parameters are valid only 
under such an assumed moment distribution, and are bound to be ap-
proximate when the moment distribution becomes drastically different. 

Giberson (13) discussed the advantages and disadvantages of the 
one-component and the multi-component models, and concluded that the 
one-component model was more versatile than the multi-component model 
because the multi-component model was restricted to the bilinear-type 
hysteresis characteristics. Therefore, using the multi-component 
model, it is difficult to simulate the fundamental characteristic of 
the reinforced concrete: the stiffness degradation. 

Connected Two-Cantilever Model  

When a frame is analyzed under lateral loads only, reflecting the 
effect of gravity load on beams, member moment distributes linearly, 
normally having the inflection point within the member. From the sim-
ilarity of moment distribution, the member can be considered to con-
sist of two imaginary cantilevers, free at the point of contraflexure 
and fixed at the member end, which are connected at the inflection 
point satisfying the continuity of displacement and rotation (17). 

Force-deflection relationships of cantilever beams can be ob- 
tained experimentally through the test of a simply supported member. 
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The flexibility relation of a member was formulated by assuming, (a) 
inflection point does not shift during a short time increment; (b) 
free-end rotation and displacement are proportional to the beam length 
and the square of the beam length, respectively; and (c) instantaneous 
stiffness for shear-rotation and shear-displacement curves of a unit 
length reference cantilever can be defined by hysteretic models. 

The weakness of this method is that the member flexibility matrix 
is a function of the location of inflection point, and is not of sym-
metric form. This weakness was caused because the matrix is formu-
lated on the basis of current inflection point, which is assumed to 
remain in that position during a short time interval. The location of 
inflection point tends to shift rapidly when the sign of a member end 
moment changes, which causes a numerical problem. Consequently, this 
method can not be recommended for a general dynamic analysis. How-
ever, the method is useful for incremental static load analysis of a 
structure. 

Discrete Element Model  

In order to overcome some difficult problems related to nonlinear 
analysis of reinforced concrete members, a member can be sub-divided 
into short line segments along the length, and assign to each short 
segment a nonlinear hysteretic characteristic. The nonlinear stiff-
ness can be assigned within a segment, or at the connection of two 
adjacent segments. 

Wen and Janssen (18) presented a method for dynamic analysis of 
a plane frame consisting of elasto-plastic segments. Consequently, 
mass and flexibility of a member were lumped at the connecting points 
on a tributary basis, except at beam-column joints which were assumed 
to be rigid. Powell (19, 20) suggested to use a degrading stiffness 
model for rigid-inelastic connecting springs (Fig. 16.a). Shorter 
segments were recommended in a region of high moment, and longer seg-
ments in a low moment region. 

An alternative method is to divide a member into short segmen*s, 
each segment with uniform flexural rigidity that varies with a stress-
history of the segment (Fig. 16.b). It is easy to handle a local con-
centration of inelastic action of a member by arranging shorter seg-
ments at the location of high concentration of inelastic deformation 
(11). 

These methods are useful when more accurate results are required, 
or in the analysis of walls. More computational effort is required 
compared to the other simple methods. 

Distributed Flexibility Model  

Once cracks develop in a member, the stiffness becomes non-
uniform along the member length. Instead of dividing a member into 
short segments, Takizawa (21) developed a model which assumed a pre-
scribed distribution pattern of cross-sectional flexural flexibility 
along the member length. A parabolic distribution with an elastic 

1 

• 
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flexibility at the member ends was given by a hysteretic model depen-
dent on a stress history. Therefore, the problem is reduced to formu-
late an instantaneous stiffness matrix of a non-prismatic member, 
whose flexural flexibility distributes in a parabolic form. 

This is an interesting concept in analyzing an inelastic member. 
However, the parabolic flexibility distribution may not describe 
actual concentration of deformation at critical sections (normally at 
member ends) due to flexural yielding and deformation attributable to 
slippage of longitudinal reinforcement within a beam-column connec-
tion. Inclusion of inelastic springs at locations of concentrated 
deformation in this model may be a useful solution. 

RELIABILITY OF ANALYTICAL MODELS 

Earthquake simulator tests provide interesting opportunities to 
examine the goodness of different analytical models in simulating the 
observed response of small- to medium-scale highly inelastic model 
structures. This section reviews the reliability of different analy-
tical models in relation to the capability to simulate the observed 
behaviour. 

These test structures were designed to behave dominantly in 
flexure, being prevented as much as possible from failing in shear or 
anchorage because shear and anchorage failures are influenced by the 
scale effect, and because the two types of failure are not desirable 
in real construction and are avoided in a design process. 

Three-Storey One-Bay Frames (I)  

Small scale three-storey one-bay reinforced concrete frames (ap-
proximately one-sixth scale model) were tested on the University of 
Illinois Earthquake Simulator (17). The connected two-cantilever 
model was used. The stiffness properties of individual members were 
calculated on the bases of the geometry and material properties. The 
Takeda model was used to represent the force-deflection of each canti-
lever model. Member end rotation due to bar slip was approximated by 
a simplified Takeda model, using a bilinear backbone curve. The bi-
linear Takeda model is very similar to the Clough model, and does not 
simulate the "pinching" behaviour due to bar slippage. The damping 
matrix was assumed to be proportional to the instantaneous stiffness 
matrix. 

The model structure was subjected to a base motion simulating 
El Centro (NS) 1940 accelerogram with a maximum base acceleration of 
0.9 g. The first floor displacement was measured to be as much as 
four times that corresponding to yielding under static lateral loads. 

The analytical models with and without viscous damping favourably 
simulated the large-amplitude oscillations at 1.0 sec., 2.0 sec., and 
5 sec. from the beginning of the motion (Fig. 18). The analytical 
models, however, failed to simulate the medium and low amplitude 
oscillations. 
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Note that the frequencies at the medium to low-amplitude oscil-
lations are higher for the analytical model than for the test struc-
ture, which indicates that the test structure was more flexible at 
low stress level than the analytical model. In order to reproduce 
lower amplitude oscillations of the observed response waveforms, a 
slip-type hysteresis model (a model which has a very low stiffness at 
low stress as shown in Fig. 5) need be introduced in the analysis. 

Three-Storey One-Bay Frames (II)  

Another set of three-storey one-bay small-scale reinforced con-
crete frame structures (approximately one-sixth scale model) was 
tested on the University of Illinois Earthquake Simulator (22). The 
test structure was similar to the last frame structures. The El 
Centro (NS) 1940 record was simulated with maximum peak acceleration 
of 1.1 g. The base motion is significantly more intense than a de-
sign earthquake motion. 

A special purpose computer program SAKE (23) for a nonlinear 
dynamic analysis of regular rectangular frame structures was used. A 
member was represented by the one-component model with two inelastic 
rotational springs at each member end: one for the flexural deforma-
tion and the other for the member end rotation due to bar slip. 
Takeda models with tri-linear and bi-linear backbone curves were * 
assigned to represent moment-rotation hysteresis behaviour of the two * 
inelastic springs. Two types of damping were used in the analysis: 
(a) a damping matrix proportional to the mass matrix, and (b) a damp-
ing matrix proportional to an instantaneous stiffness matrix. The 
first mode damping factor was 5% of critical at the initial elastic 
stage. 

Observed and calculated third level displacement waveforms were 
compared in Fig. 19. The comparison is fair for large amplitude 
oscillations as before. The waveform at low amplitude oscillations 
was not simulated well. Again in this analysis, a slip-type charac-
teristic was not incorporated in the analysis. 

A fair agreement between the computed using the one-component 
model and the observed may be attributable to the fact that the in-
flection point tended to be near the mid-point of each member in such 
a low-rise frame structure. The usage of the one-component model for 
high-rise frame structures is cautioned. 

Two-Storey One-Bay Frame  

Two-storey one-bay medium-scale frame structures (approximately 
one-half scale model) with slabs were tested on the University of 
California Earthquake Simulator (24, 25). The structure was analyzed 
using the two-component model, which can not incorporate the stiff-
ness degradation. In an effort to improve the correlation, the 
elastic stiffness of two-parallel components was degraded as a func-
tion of a first-mode-response amplitude history, including previous 
maximum displacement amplitude and the number of displacement cycles 
exceeding a specified value. The parameters which controlled the 
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degradation and deterioration mechanism could not be determined on 
the basis of material properties and the structural geometry. The 
initial period of vibration of the mathematical model was adjusted to 
correspond with that measured before the start of the test. 

The observed and the calculated second floor displacement wave-
forms are compared in Fig. 20. Good correlation can be observed for 
the waveforms with large amplitudes. 

Ten-Storey Coupled Shear Walls  

Four ten-storey coupled shear walls were tested on the University 
of Illinois Earthquake Simulator( 26). Takayanagi and Schnobrich (11) 
divided a wall into short segments of uniform stiffness (Fig. 16.b), 
and used the one-component model (Fig. 13) to represent a connecting 
beam. It was judged that the usage of two-dimensional plane stress 
elements for the walls was less desirable because such an approach 
might cost more computational effort without any compensating in-
crease in accuracy. 

In the analysis of a coupled wall, axial force in a wall element 
changes due to the overturning effect. The moment carrying capacity 
of a reinforced concrete section is sensitive to the axial load. 
Therefore, Takayanagi and Schnobrich (11) incorporated this effect in 
the Takeda model by changing the tri-linear moment-curvature backbone 
curve as a function of existing axial force in the wall element. The 
flexural, shear and axial rigidities were assumed to be uniform with-
in a wall segment. Shear rigidity was varied proportional to flexural 
rigidity. The Takayanagi model with pinching action and strength 
decay was used in a beam. 

The comparison of the measured and calculated displacement and 
acceleration is excellent, as shown in Fig. 21. 

Inelastic actions of the connecting beams played a major role in 
controlling the structural response since the beam strength controlled 
the axial forces that developed in the wall, and the wall moment capa-
city was affected by the changes of these axial forces. 

It is necessary to include the effects of inelastic axial rigid-
ity of the wall section, and pinching action and strength decay of the 
connecting beams to reproduce the maximum displacement response and 
the elongation of the period. The strength decay has a larger effect 
on the maximum displacement response and on the elongation of the 
period than does any pinching action. Some stiffness parameters for 
the walls and connecting beams were defined on the basis of static 
tests of connecting beam-wall assemblies. 

CONCLUSION 

The behaviour of reinforced concrete buildings, especially under 
earthquake motion, was briefly reviewed. When a structure can be 
idealized as plane structures, the current state of the art provides 
useful and reliable analytical methods. 
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The favourable comparison of the measured and the calculated 
response waveforms encourages the use of right analytical and hyster-
etic models. It is desirable in developing a mathematical model that 
all parameters of the proposed model should be evaluated on the basis 
of the geometry of a structure and the properties of materials. 

However, more research is required to understand the effect of 
slabs, gravity loads and biaxial ground motion on nonlinear behaviour 
of a three-dimensional reinforced concrete structure. 
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Fig. 5: Rotation Due to Bar Slip (7) 
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Fig. 10: Takayanagi Model with Pinching and Strength Decay (11) 
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Fig. 11: Degrading Trilinear Model 

Fig. 12: Deformation of Beam Under Gravity and Earthquake Loads 
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Fig. 16: Discrete Element Model 
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Fig. 19: One-Component Model Applied to 
Three-Storey Frame Analysis (22) 
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Fig. 21: Analysis of Ten-Storey Coupled Shear Wall (11) 


